The Common HOL Platform

Mark Adams
Proof Technologies Ltd, UK
Radboud University, Nijmegen, The Netherlands

The Common HOL project aims to facilitate porting sourceecadd proofs between members of the
HOL family of theorem provers. At the heart of the projecthie Common HOL Platform, which
defines a standard HOL theory and API that aims to be compatitth all HOL systems. So far,
HOL Light and hol90 have been adapted for conformance, and E&o was originally developed
to conform. In this paper we provide motivation for a platigrgive an overview of the Common
HOL Platform’s theory and API components, and show how tpakigacy systems. We also report
on the platform’s successful application in the hand-tieticn of a few thousand lines of source
code from HOL Light to HOL Zero.

1 Introduction

The HOL family of theorem provers started in the 1980s with HOLS88 [5], had since grown to
include many systems, most prominently HOL4 [16], HOL Light [8], ProeiEoHOL [3] and Is-
abelle/HOL [12]. These four main systems have developed their own egldgroof facilities and
extensive theory libraries, and have been successfully employed in prajects in the verification of
critical hardware and software [1, 11] and the formalisation of mathem&cs [

It would clearly be of benefit if these systems could “talk” to each othegifipally if theory, proofs
and source code could be exchanged in a relatively seamless manisavotitd reduce the considerable
duplication of effort otherwise required for one system to benefit filaenmajor projects and advanced
capabilities developed on another. Work to date has concentrated angeobif proofs via proof objects,
with some degree of success, but little has been done to facilitate portingroesmde.

The Common HOL Platform is part of the Common HOL project for facilitating theéipg of source
code and proofs between HOL systems. It defines a standard HOly tmapatible with the core theory
of each HOL system, and an application programming interface (API) gfranoming components that
is more-or-less common to all HOL systems. It has so far been supportgdlin_ight, hol90 [15] and
HOL Zero [19].

In this paper we give an overview of the platform. In Section 2, we furthesuss motivation. In
Section 3, we cover the platform’s choice of components. In Section 4xplaie how to adapt legacy
systems to conform to the platform. In Section 5, we report on its suctessige in assisting the
manual porting of both new and legacy source code. In Section 6, \8ergdreur conclusions.

2 Motivation

By definition, all systems in the HOL family implement the HOL logic or a close vari&tdwever,

in practice their commonality stretches far beyond this. They have broadly siaxiematisations
of the logic, similar mechanisms for logical extension, similar formal languagerete syntax and
build up similar foundational theory. Furthermore, in most basic usage st ldgey each support

Submitted to:
PXTP 2015

2 The Common HOL API

similar paradigms of user interaction, namely simple forwards-style applicatiorievence rules and
backwards-style tactic proofs via the subgoal goal package [1dhrpeed in an interactive functional
programming session. Also, their implementations are all written in variants of thiiMtional pro-
gramming language, all employ an LCF-style architecture [6] and are alllpufitom similar libraries
of programming utilities, syntax utilities, inference rules and tactics.

Other than in these basic aspects, the systems branch off in their owntsedpach builds up con-
siderable theory beyond the basic foundations in its own way. For exareplejumbers in HOL Light
are constructed quite differently from real numbers in ProofPower H@kre is also much variation in
their provision of user proof commands, especially for those relating @f pragomation, with each sys-
tem having its own strengths and idiosyncrasies. Most different islls&8©L, which is implemented
as an instantiation of the Isabelle generic theorem prover [17] rathebshlaaving its deductive system
“hardwired” as source code, and supports a variant of the HOL logichths axiomatic type classes.
Also, the predominant mode of interaction with Isabelle has become the dieelgmaof language Isar
in conjunction with a bespoke IDE, rather than the subgoal package inexadtive ML session.

Porting proofs between HOL systems by hand involves translating progfsss These proof scripts
typically involve heavy use of high-level proof commands that differ betwsystems. In cases where
such commands are used to finish off subgoals, it is often possible to finthblg powerful command
to do the same in the target system, but in other cases proof scripts haveettrdsted from scratch.
Automatic proof porting, via recording of low-level proof steps and ekpmoproof object files, is vastly
preferable if it can be made sufficiently reliable. Such a capability reqairpktform of common
foundational theory, inference rules and logical extension mechanisbughrsystems.

There have been notable successes in the large scale porting of legafs/letween HOL systems
via proof objects. Obua and Skalberg [13] developed a capability fdingoproofs from HOL4 to
Isabelle/HOL, using a theory platform based on the HOL4 inferenceckeaind then adapted this for
porting from HOL Light to Isabelle/HOL. Kaliszyk and Krauss [10] deyed a capability for porting
from HOL Light to Isabelle/HOL, based on the HOL Light inference kériiée OpenTheory project [9]
is based around the HOL Light axiomatisation, and establishes a commoropjectformat for porting
proofs between various HOL systems, including HOL4, ProofPower/A@LHOL Light, with ongoing
work to support Isabelle/HOL. However, these capabilities would all gteup port something as large
as the entire Flyspeck project [7]. We believe that significant advainceaspability can be achieved
by exploiting a broader commonality that exists between HOL systems, usintf@plat a somewhat
higher level than the inference kernel of one system.

Porting source code from one system to another currently requireskdew/ledge of both systems’
implementations and can entail weeks of effort to replicate behaviourisatfic closely. Naive port-
ing of high-level routines will typically result in unreliable code due to the coumgling of small and
subtle differences in the theory or in ML function behaviour. We knowmpre-existing capability for
supporting the systematic porting of source code between HOL systems.

We believe that if the existing HOL systems can be adapted to support a wajhdd API that
reflects the commonality of “primary functionality” (by which we mean functionalitgctly concerned
with theorem proving) between the systems, then much of the pain of portingescode can be avoided.
There is then a platform of precisely corresponding programming compsrand source code built on
this platform in one system can be trivially but accurately ported to anogts¢éers conforming to the
same platform. As is also the case for a proof porting capability, both ML caengs and foundational
theory have to be taken into account when designing an effective ptatfor

M.M. Adams 3

3 Components

In this section, we give an overview of the components that make up ver$asf the Common HOL
Platform. This is the latest version, and has been implemented for HOL Lighi@h Zero. An earlier
version was implemented for hol90, but this has not yet been upgrades. tkough the platform has
not yet been implemented for ProofPower HOL or HOL4, it has beeriubrdesigned with knowledge
of how these systems work. However, little consideration has so far treemtg Isabelle/HOL, which
presents greater challenges due to its greater differences. A sighificksign of the standard would
probably be required to properly cater for Isabelle/HOL.

There is no space in this paper to list all the platform components, let alorestoilne each one.
Instead we provide various tables comparing some corresponding centpdrom hol90, HOL4, Proof-
Power HOL, HOL Light and HOL Zero. For a given system, each platfoonmponent is either exactly
represented in the system, or it is approximately represented, or it ispresented in the system. In
our listings, those components only approximately corresponding are writtemly brackets.

There is not yet a single stand-alone document specifically for the peigfgrecisely defining each
platform component. However, part of the original motivation for the H@aZsystem was to act as a
clear demonstration of the platform, and it has been designed to exactlyreotd platform behaviour
without adaption. Readers can download the HOL Zero source distriji®nwhere source code file
commonhol.mli gives a complete list of the APl components, and the user manual appegdieea
precise description of each APl and theory component.

3.1 Considerations
Here we discuss some factors that should be taken into consideratiorctwb@sing the components.

Commonality Platform components should broadly reflect the commonality that exists betivee
systems. Including components that are only relevant in one system watalitl extra effort to
make the other systems conformant, and would be of little use to them. Not inchalmgonents
that are common to all systems would mean that basic components from o sy@iéd have
to be needlessly considered when porting to a target system.

Usage Amount of usage in post-platform code should be taken into consideratien @eciding the
platform components. Heavily used components should almost qualify byltef

Level The components should be sufficiently high-level to be of likely use in plagiepm source code.
For example, including low-level subcomponents used to make a HOL teserpaould be of
little use, even if these components were common to all HOL systems.

Precision A platform without precisely defined components of course loses muchpfrigose. In HOL
systems, there are many small differences in the details of the behavicanais corresponding
basic functions. For each component, the platform should explicitly spisiéxact behaviour or
otherwise be clear about what is not specified. Non-conformant coemp® must have platform-
conformant variants defined as part of platform qualification.

Underspecification The API should allow some degree of flexibility in certain kinds of details about
it components. For example, the ML names of the components, or the orddrich fanction
components take arguments and whether tuples or curried form is useddPiltshould seek to
minimise the effort required to make legacy systems conformant by undékspe these details,
which are not the kinds of differences that make porting source cofileudtif

4 The Common HOL API

CompletenessThe components should be complete in the sense that all primary functionalityeca
built from platform components alone. This becomes essential for théraotws's and destructors
of abstract datatypes (such as for HOL types, terms and theoremsisbdba&re is otherwise no
way of manipulating such values.

Coherence The components should be chosen as a coherent set that categors®riplate and con-
sistent way and that composes robustly. This makes it easier to write neasdd on the API,
as well as helping portability.

Performance The API should not exclude components that are important to the perfoenoéa system
if this means they would otherwise need to be reimplemented in the outer platfommmdéAPI
components to result in a significant degradation in performance.

Ease of Implementation The implementation effort required to conform to a platform is a significant
consideration. Otherwise, in practice the platform will not get implementethéofull range of
HOL systems, which defeats its purpose.

3.2 Theory Components

The theory components are the axioms, declarations and definitions thaexigtsin a conformant
system’s theory. They must form a sufficient basis for building up ed@h siystem’s theory.

There is some variation in the systems’ axiomatisations, especially between igitlahd the other
systems. Because each system implements the same formal logic, for oosgsigd completeness it
is sufficient to choose the core theory (i.e. the theory of the logical adrehe system as the theory
platform, and to derive this in the other systems from their respective ceoei¢s. The outer platform
(see Section 4.1) in these other systems can then “re-derive” the systn@’theory using the theory
platform. A platform theorem may be an axiom or definition theorem in one reyated a derived
theorem in another, but as far as the platform is concerned they arstati@orems.

Our theory platform features the axioms and definitions of ProofPowdr, kiDich we view as
the most intuitive, and which are close to those of hol90 and HOL4. It aldodas the HOL Light
definition of the implication operator, which does not feature in the otherragdbecause the behaviour
of implication drops out from their primitive inference rules and the implicaticisgmmetry axiom.
Including this definition means that any of the systems’ primitive inferencesatleuffices to complete
the deductive system. A handful of fundamental theorems that are comrhahderived in each system
are included in the platform, such as the truth theorem and the Law of thedexicMiddle, because they
are inevitably needed in implementing the platform and so may as well featuoerg®nents.

The type constants and constants declared in the theory platform incluseftbm the basic theory
about predicate logic and lambda calculus that is common to each HOL systahiiséed in the logical
core and initial derived theory of each system. This includes the fungtiacestype operator and the
boolean base type, plus the equality, conjunction, disjunction, implication gitlmegation operators,
the universal, existential and unique existential quantifiers and the Hibeite operator.

Beyond this, each system builds up essentially equivalent theory of fistissand natural numbers.
To take advantage of this commonality, the platform also includes theory ifergrad natural numbers,
including natural number numerals and 13 classic arithmetic operators inclidisigmultiply and ex-
ponentiation. Theory for lists does not currently feature, but is plaforadclusion in a future version.

The representation of natural number numerals varies between HOIsysteHOL Light, HOL4
and HOL Zero, each numeral is constructed using compounding of twy wmerators on the zero
constant (one for multiplying by two and adding one, and one for multiplying loyamd adding zero or

M.M. Adams

hol90 HOL4 ProofPower HOL Light HOL Zero
"bool" "bool" "BOOL" "bool" "bool"
"fun" "fun" "t "fun" =>n
"pI‘Od" "pI‘Od" "X "pI‘Od" "
"ind" "ind" "IND" "ind" "ind"
"num" "num" "N "num" "nat"
T e " " "true"
"F" nE "F" "F" "false"
n=n n=n n=n n=n n=n
AN AN "AM AN AN
"\/" “\/" A "\/" "\/"
n.un n.on Il_\ll n.un n.on
e nyw ny e e
nen nou ngn nen nen
npyn npyn "Iy neyn npyn
"e" "o" e "e" "e"
IMP_ANTISYM AX | IMP_ANTISYM AX* | = _antisym axiom - imp_antisym ax
ETA_AX ETA_AX n-axiom ETA_AX eta_ax
SELECT_AX SELECT_AX €_axiom SELECT_AX select_ax
BOOL_CASES_AX BOOL_CASES_AX bool_cases_axiom | BOOL_CASES_AX" | bool_cases_thm*
INFINITY_AX INFINITY_AX infinity_axiom INFINITY_AX infinity_ ax
T_DEF T_DEF t_def T_DEF true_def
F_DEF F_DEF f_def F_DEF false_def
AND_DEF AND_DEF N_def {AND_DEF} conj_def
- - - IMP_DEF -
OR_DEF OR_DEF V_def OR_DEF disj_def
NOT_DEF NOT_DEF —_def NOT_DEF not_def
FORALL_DEF FORALL_DEF V_def FORALL_DEF forall_def
EXISTS_DEF EXISTS_DEF J_def EXISTS_THM" exists_def
{UEXISTS_DEF} {UEXISTS_DEF} J1-def {UEXISTS_DEF} uexists_def

Table 1: The type constants, some of the constants and some of the theioiuting all the axioms)
of the theory platform. Derived theorems in a given system are marked with

two depending on the system), whereas numerals in hol90 and ProofA@iciorm an infinite family
of constants. However, beyond the definition of a set of basic numettaingtic evaluation inference
rules, these differences do not surface in practice in the implementatiting systems. Thus we have
abstracted away from the theory platform the detail of how numerals firede

3.3 API Components

The API components form the ML interface for programming primary funetion There are approxi-
mately 475 components, mainly consisting of ML function and constant vdduea|so seven datatypes
and three exceptions. Three configuration values are also provideédald the HOL system name and
version and the Common HOL Platform version. In each conformant sygtem\PI is provided as an
ML module interface file, with components given the same ordering to aid cisopdretween systems.
Note that table components that have ML infix fixity in a given system are wiittparentheses.

3.3.1 Functional Programming Library

There are around 100 functional programming library components @d#e Z for a selection).

The Common HOL API

hol90 HOL4 ProofPower| HOL Light HOL Zero
curry curry curry curry curry
uncurry uncurry uncurry uncurry uncurry
C C switch C swap-arg
I I I I id_fn
K K K K con_fn
W W - W dbl_arg
(o) (o) (o) (o) (<%
() (##) () (F_F) pair_apply
map map map map map
map2 map2 - map2 bimap
{funpow} {funpow} fun_pow {funpow} funpow
itlist itlist fold itlist foldr
rev_itlist | rev_itlist revfold rev_itlist foldl
end_itlist | end_itlist - end_itlist foldril
- - foldll

Table 2: Some of the functional programming library APl components.

Included are many basic operations on ML pairs, lists and strings, sisgheasging the first element
of a pair, reversing the order of elements in a list, or turning an integer intiong.s Association lists
are also supported. Also included are various classic functional gamoging meta operations, e.g. for
applying a function to each element in a set, or folding up a list into a single etdoyeapeated appli-
cation of a binary operator. There is also a collection of set operatiotistepsuch as set membership
and set union, under either equality comparison or a supplied equiealelation.

For coherence, we fill out the gaps that exist in the various legacyrsygslibraries. For example,
all kinds of folding operators and their inverses, unfolding operatwesprovided, and all set operations
are provided for both under equality and a supplied equivalence relation

Three kinds of standard exception are catered for. normal failutasttaphic failure and “local
failure” (used for control flow within a function). The API underspessfithe form of the exception
arguments and the textual content of error messages

Note that there is some variation in the behaviour of some library functionsebataystems. For
example funpow, which iterates a function application for the number of times specified by @isdp
integer, does not fail in hol90, HOL4 or HOL Light if the integer is negativ@enerally, platform
functions are specified to fail if supplied with invalid arguments, and the pratiersion offunpow
fails if its supplied integer is negative, as is done in ProofPower HOL and Bo.

3.3.2 Type, Term and Theorem Ultilities

Around 150 HOL type, term and theorem manipulation utilities are providedTakle 3 for a selection).

The bulk of these utilities are syntax functions for HOL types or terms, fostracting, destructing
and testing for a given syntactic category. Two levels of syntactic categersupported for both types
and terms. Firstly, there are the primitive syntactic categories, namely theasipbles and type constant
applications for types, and variables, constants, function applicatiehiaarda abstractions for terms.
These are very widely used throughout the HOL implementations. Sectimellg,are the basic syntactic
categories associated with the type constants and constants of predid@enkb¢dambda calculus that
feature in the theory platform. Some of these are also used heavily thnaithedH1OL implementations,
but we include support for all such syntactic categories in the API foe@nce with the theory platform
and the API inference rules.

M.M. Adams

hol90 HOL4 ProofPower HOL Light HOL Zero
type-of type-of type-of type-of type_of
type_vars_in_term | type_vars_in term | {term_tyvars} | type_vars_in_term term_tyvars
aconv aconv (~=%) aconv alpha_eq
- rename_bvar - {alpha} rename_bvar
free_vars free_vars frees frees free_vars
free varsl free_varsl - freesl list _free_vars
- var_occurs is_free_in {vfree_in} var_free_in
{free_in} free_in - free_in term_free_in
all_vars - - variables all_vars
all_varsl - - - list_all_vars
inst {inst} {inst} {inst} tyvar_inst
- rename_bvar - {alpha} rename _bvar
- - {var_subst} vsubst var_inst
{subst} {subst} subst subst subst

Table 3: Some of the term utility APl components.

There are various ML bindings for HOL constants and base types &shinrthe theory platform,
and for commonly used HOL type variables. Also included are utilities for detstig a theorem into
its assumptions and conclusion parts, and for equality and alpha-equgatemparison of theorems.
There are also various type and term operations defined that aréi@geedefining an inference kernel.
These include calculating the type of a term, listing the type variables of a tygimgdor the alpha
equivalence of two terms, and performing variable and type variable tregian.

The platform utilities for HOL terms are generally specified to work modulo akapévalence in
their arguments. This was decided because different systems germurateMariable names differently
when avoiding variable capture in type variable and variable instantiatiehs@ithis measure makes
the API functions more robust when ported. An arbitrary bound variahfee used in an operation in
one system could otherwise cause the equivalent operation in anosemstp fail. Note that hol90's
free_in, which tests for one term occurring free in another, does not work foapha equivalence,
and so does not conform to the platform.

Note that there are various subtle differences between differentnsysteilities that can trip up
casually ported code. Examples include ProofPower H@k's onst constructor, which does not test
that a constructed constant is well-formed, and hol90’s and HOleE$ _imp andis_imp, which work
for logical negation as well as implication (although HOL4 kdast_imp_only andis_imp_only for
implication only). The APl chooses more conventional behaviour.

3.3.3 Theory Extension and Listing Commands

Around 40 theory extension and querying functions are provided. ifiblisdes primitive theory exten-
sion commands for type declaration, term declaration, constant definitingstant specification and type
constant definition. On top of these, there are a few basic derivedytegt@nsion commands, for ex-
ample the command to define a function constant using a universal qudotifilee function arguments
instead of a lambda abstraction. Most systems have more sophisticatedaxtammands, but these
are excluded from the platform because there is much variation in theibiigpbetween systems.

Each system also provides querying commands to access informationthbdbheory extensions
that have been made, although HOL Light omits support for queryingtgtrouitive type constant
definitions. Such commands are essential for the approach for prdisinguadvocated in [2], and a
complete set features in the API.

8 The Common HOL API

3.3.4 Inference Rules

Around 100 basic inference rules are provided by the API (see Tdoleadselection).

It is sufficient for the platform inference rules to include just a kertigronitive rules that suffice,
when coupled with the axiom and definition theorems in the theory platform, to imptetme HOL
deductive system. Given our choice of theory platform, any of the sySteningitive inference rules
would be sufficient. However, efficiency is also a consideration. Ifimniive rule of a given system
were missing from the API, it would have to be reimplemented in that system’s glatéorm in terms
of the API inference rules, and which would in turn need to be implementedrimstef the system’s
primitives. An execution of such a recreated primitive could require 1{pfatform rule applications or
more, resulting in an unacceptable performance penalty. Thus we diedoskide the union of primitive
rules from each system in the platform (with the exception of one HOL Lightifive explained below).
This principle qualifies around 35 rules for inclusion in the platform. Notedhah system except HOL
Zero has primitive rules that are derive able in terms of other primitivesafiguincluded to improve the
system’s performance, which explains why the union includes as many as 35

Also included are around 15 other inference rules at roughly the samkdevhe union of the
primitive inference rules, including the equality symmetry rule and the cutfad@sing the conclusion
of one theorem to eliminate an assumption in another. A further 25 rules dueénacfor performing
equality congruence over certain operators, in addition to the two thatr@sert as a result of being
primitive inference rules. For coherence, these fill out the patchyigioovin existing HOL systems
with full coverage for the HOL operators supported by the API syntaktions.

In addition, for natural arithmetic expressions there are conversiavided for performing evalu-
ation of operators applied to numeral arguments for each of the 13 natithahetic operators featured
in the theory platform. This is sufficient to provide complete coverage of iineitfye natural numeral
arithmetic inference rules provided by hol90 and ProofPower HOL (wiephesent numerals as con-
stants). This allows the platform to keep abstract the underlying repati®enof numerals.

It is vital that the API specifies precise behaviour for each of its infexentes. There is a degree
of variation in the behaviour of various rules between systems. We outlieesbene ways in which the
platform promotes robustness in the details of the behaviour it specifiés foference rules.

As with the API's term utilities, its inference rules also work modulo alpha edeice, for the
same reasons. Note that the successful execution of HOL Ligft’s rule (not to be confused with its
BETA_CONV rule) can fail depending on the name used for a bound variable in oneasgjiisnents, and
because of this it is excluded from the API, despite being a primitive of H@htl. Fortunately, the
consequences on performance in HOL Light are minimal becBEBE can be implemented purely in
terms ofBETA_CONV, which is in the API.

It was also decided that APl inference rules should not depend omgbere of assumptions in their
theorem arguments, also to help robustness. It is harmless for a rule teeramassumption if it can,
and this should not result in failure in rules composed with it. So, for exarti@eaule for discharging
an assumption matching a supplied term should not fail if the assumption isasaniin the theorem
argument. Note that ProofPower’s classical contradiction ¢wentr_rule breaks this principle, but
other systems’ equivalents do not.

There are also various other differences in behaviour between sdgmingvalent rules in different
HOL systems. One particularly extreme case is the rule for instantiating ty@hes, calledINST in
hol90, HOL4 and HOL Light, which is a primitive of every HOL system. In hqléfly type variables
in the conclusion are instantiated. In HOL Light and HOL4, non-variablegyip the instantiation list

1in the paper, we occasionally abbreviate the terfarence ruleo rule.

M.M. Adams 9
hol90 HOL4 ProofPower HOL Light HOL Zero
ASSUME* ASSUME* asm_rule* ASSUME* assume_rule*
BETA_CONV* BETA_CONV* | simple_f3_conv”* BETA_CONV beta_conv*
CCONTR* CCONTR* {c_contr_rule} CCONTR ccontr_rule
CHOOSE* CHOOSE* simple 3 elim CHOOSE choose_rule
CONJ* CONJ* A_intro CONJ conj_rule
CONJUNCT1* | CONJUNCT1* A_left_elim CONJUNCT1 conjunctl_rule
CONJUNCT2* | CONJUNCT2* A_right_elim CONJUNCT2 conjunct2_rule
CONTR* CONTR contr_rule CONTR contr_rule
- - DEDUCT_ANTISYM RULE* | deduct_anitsym rule
DISCH* DISCH* =_intro* DISCH disch rule*
DISJ1* DISJ1* V_right_intro DISJ1 disjl_rule
DISJ2* DISJ2* V_left_intro DISJ2 disj2_rule
DISJ_CASES* | DISJ_CASES* V_elim DISJ_CASES disj_cases_rule

Table 4. Some of the inference rule APl components. Primitive rules in a gixgtem are marked with

argument do not cause failure. And in ProofPower HOL, any frel@bkas that would otherwise become
equal as a result of the instantiation are renamed. None of these idiasigscexist in the API version.

3.3.5 Parsing and Pretty Printing

Around 20 functions supporting parsing and pretty printing are providéae API. This includes func-
tions for parsing strings into HOL types and terms, and printers for typeastand theorems. There
is also support for setting the fixity of HOL functions and type operatohe fixities supported exceed
what is provided by hol90, ProofPower HOL and HOL Light, but do nderd to the full range of
fixities supported by HOL4. There are plans to extend the platform to suglbof HOL4's fixities.

4 Implementation

4.1 Architecture

For a legacy system to conform to an API, its source code must be adaptedt every component of
the API is implemented in the system. For the Common HOL API, we use a softwadriéeature for
adapting legacy HOL systems that is designed with the three goals of minimising inmpégioe effort,
enabling API-level virtualisation, and facilitating the demonstration that th@tadasystem exhibits
precisely the same behaviour as the legacy system.

To achieve this, we choose an appropriate point in the build of the legatmsyhat corresponds to
the level of the API (thelatform leve), and insert an ML module for the API components (ttegtform
modulg at this point. All legacy source code occurs either before or afterléittopm level (respectively
called thepre-platformandpost-platformcode) and stays exactly the same. Keeping the pre- and post-
platform code the same makes it easier to argue that the system’s behadmotheen altered.

In the platform module, we define the API in terms of pre-platform functionadityy APl compo-
nents not precisely implemented as a pre-platform component must be impldrherge This includes
components missing from the legacy system, or with imprecisely corresporglingkents in the pre-
platform code or that are implemented as post-platform code. For any imgdietnas post-platform
code, the full tree of post-platform code used to define it can be shiftedhe platform module, or, if
this is too big, then a more succinct version can be implemented specially fdatfem. The code for

10 The Common HOL API

post-platform API components can then be deleted from its original posititreisource code (thus the
post-platform code remains the same except for deleted code that atthesglatform module).

In our architecture, all post-platform code implementing primary functionaliyniglemented in
terms of the API. This enables the API to act as a virtualisation layer throdgthvall primary func-
tionality is executed. This virtualisation layer can then be used for recopdoufs as they are executed,
before exporting them to proof objects. In order to achieve this and keepost-platform code the
same, we must somehow have a way of referring to pre-platform codis tegtd by post-platform code
but is not in the API. We do this by implementing a module immediately after the platfortolaan the
build that re-implements all such pre-platform code in terms of the platforrmwoiieg the pre-platform
code. We call this theuter platformmodule.

In arguing that the system’s behaviour has not altered in the API-adjustsin of the system, we
must justify why any reimplementation of post-platform code in the platform modulé any reimple-
mentation of pre-platform code in the outer platform module, preservesidmality.

Given that the API components correspond to classic basic componemtd©OL system that tend
to be implemented towards the start of the build of the system, finding an ajgteopisertion point for
the platform level tends to be fairly straightforward. It is to be found atterdefinition of the HOL
type and term datatypes and basic utilities for manipulating them, the inferemmad, kbe initial theory
and the parser and pretty printer. It is typically before the derivedenfas rules for predicate logic and
the theory for pairs and natural numbers, which would need to be movedécreated in the platform
module.

4.2 Adapting HOL Light

We now describe how we adapted HOL Light SVN release 197 to confothetplatform. The reader
may find it instructive to download the adapted system [18].

The platform level in the HOL Light build file was chosen between the sdilesparser .m1 and
equal.ml. About 1,000 lines of post-platform code implementing platform components meved
into the platform module. Much of this was derived inference rules implemersied lemmas proved
using HOL Light's automated proof facilities. Instead of recreating thesiéitfas inside the platform
module, we employed Common HOL proof porting to export the proofs of fieesmas as proof objects,
which were then hand-translated into a total of around 400 lines of fdsastiyle proof script in the
platform module. An alternative approach was used to recreate theltd#wa rules for natural numeral
arithmetic, whose implementationé¢alc_num.ml involves lemmas proved in hundreds of lines of proof
script. Instead of exporting proof objects for these lemmas, the inferetezswere given a completely
different implementation in the platform module, ported from HOL Zero in aB0Gtlines.

About 1,000 lines of code were required to fill out platform componentsinggsom HOL Light.
For those components with an approximate equivalent already in HOL Lighgxisting component
was used in the implementation of the platform variant (e.g. see Figure 1)stweethat the platform
variant had roughly the same performance as the original. Those contpavith no approximate HOL
Light version were ported from HOL Zero. In total, the components pdrad HOL Zero required
about 1,350 lines of supporting source code to be ported from HOL, Zeaily involving forwards
proof to prove lemmas. The platform module interface is written in about 508 éiheode.

For the outer platform, primitive inference rules and theory commands thabtdoonrespond to
platform components must be precisely recreated in terms of the platformOlnLight, this involves
the INST_TYPE andBETA rules and all the theory commands. Also, non-platform theorems usedne defi
platform theory needed to be recreated. In total, the outer platform egbjaiound 800 lines of code.

M.M. Adams 11

let INST_TYPE1l theta th =
let () = if (forall (is_vartype o snd) theta)
then failwith "INST_TYPE: Non-type-variable in instantiation domain" in
INST_TYPE theta th;;

Figure 1: Using HOL Light’s originaINST_TYPE in the definition of the platform variant.

Overall, the platform and outer platform modules involved around 6,000dih&surce code, includ-
ing the platform module interface. This took around two weeks of effort¢ate. The code was mostly
systematically produced, being either moved from other parts of HOL Ligitte@ from HOL Zero,
translated from proof object files, or simply a listing of platform componeiitse only code requir-
ing creative thought was in the platform module variants of components wifoginate equivalents
already in HOL Light, and in much of the outer platform, totalling to around 1,0@lin

5 Use Cases

In this section, we report on two use cases for the Common HOL Platfornsistiag manual ports of
source code between platform-adapted HOL systems. In both casesyrtiveas from HOL Light to
HOL Zero. This is on the easy end of the difficulty spectrum in inter-HO&tesy code porting, because
both systems are implemented in the same dialect of ML, i.e. OCaml, and becauas#tesystem,
HOL Zero, is almost a blank canvas with very little post-platform code to censfother HOL systems
have considerable post-platform code, and porting should attempt t® aeygre-existing code if it is
straightforward to do so, to avoid creating an almost duplicate stack obslingp functionality in the
target system. However, both ports described here would still be diffitiout the support of the
platform, and so the use cases provide useful insight.

5.1 Legacy Code Port: HOL Light Rewriting Mechanism to HOL Zero

In our first use case, we ported HOL Light's entire rewriting apparattkdt Zero. This is defined rela-
tively early on in HOL Light’s post-platform code, but provides vital ftinnality that is used throughout
the rest of the system, and goes far beyond what HOL Zero is capaibléenins of proof automation. It
is implemented in 360 lines of code, in the HOL Light sourcedilep.m1, and relies on 60 lines of code
defining discrimination nets, and a further 300 lines of post-platform cefleidg supporting function-
ality such as conversion combinators. Thus there was a total of 720 linesttdpt this would probably
be less if porting to another HOL system because it would already suggorérsion combinators. See
Figures 2 and 3 for a sample of 32 lines from the port.

The manual port was carried out in about 2 hours 30 minutes of effate that this time does not
include approximately 30 minutes of effort required to extract out the 366 thelOL Light supporting
code prior to the port. The porting itself involved systematically looking up H@koZequivalents of
HOL Light platform functions, and renaming accordingly. HOL Light's epgase names, that don'’t
conform to normal OCaml lexical syntax, also needed to be converted &vdage names. Instantiation
lists, which have old-to-new ordering in HOL Zero but new-for-old oiraiggin HOL Light, needed to be
switched around. The datatype constructors for types and terms, whiefsible outside their defining
module in HOL Light but not in HOL Zero, required some pattern matches tefiaged with abstract
destructors and if-expressions. The functimrm_match name-clashed with a pre-existing HOL Zero
function, and so was renamedid_term match.

12 The Common HOL API

let mk_rewrites =
let IMP_CONJ_CONV = REWR_CONV(ITAUT ‘p ==> q ==>r <=>p /\ q ==> r¢)
and IMP_EXISTS_RULE =
let cnv = REWR_CONV(ITAUT ‘(!x. P x ==> Q) <=> (?x. P x) ==> Q) in
fun v th -> CONV_RULE cnv (GEN v th) in
let collect_condition oldhyps th =
let conds = subtract (hyp th) oldhyps in
if conds = [] then th else
let jth = itlist DISCH conds th in
let kth = CONV_RULE (REPEATC IMP_CONJ_CONV) jth in
let cond,eqn = dest_imp(concl kth) in
let fvs = subtract (subtract (frees cond) (frees eqn)) (freesl oldhyps) in
itlist IMP_EXISTS_RULE fvs kth in
let rec split_rewrites oldhyps cf th sofar =
let tm = concl th in
if is_forall tm then
split_rewrites oldhyps cf (SPEC_ALL th) sofar
else if is_conj tm then
split_rewrites oldhyps cf (CONJUNCT1 th)
(split_rewrites oldhyps cf (CONJUNCT2 th) sofar)
else if is_imp tm & cf then
split_rewrites oldhyps cf (UNDISCH th) sofar
else if is_eq tm then
(if cf then collect_condition oldhyps th else th)::sofar
else if is_neg tm then
let ths = split_rewrites oldhyps cf (EQF_INTRO th) sofar in
if is_eq (rand tm)
then split_rewrites oldhyps cf (EQF_INTRO (GSYM th)) ths
else ths
else
split_rewrites oldhyps cf (EQT_INTRO th) sofar in
fun cf th sofar -> split_rewrites (hyp th) cf th sofar;;

Figure 2: A sample of legacy source code from HOL Ligktisip . m1.

HOL Light non-conformant versions of platform functions, such asitsiant function, required
special attention. Unlike the platform equivalent, this function does noif fésl avoidance list contains
non-variables, and so the code was adapted to either filter them outal ttfae non-variables are not
possible from program context. Other complications included two uses &f H@ht's intuitionistic
tautology proverITAUT. It was decided to keep this function outside the scope of the port, despite it
being used to prove two lemmas, to reduce the amount of supporting codteRdOL Zero version,
one of the lemmas already existed in HOL Zero’s small library of predicate tbgarems, and the other
was proved in 10 minutes in a 16-line proof using HOL Zero’s forwardretiee rules.

After the port was completed, it was tested on various rewriting exampldgyranerror was found.
This took 45 minutes of debugging to track down and correct, and was daejtirk in the failure
exception returned by HOL Light'sev_assoc function, which has error message téxtind" (instead
of "rev_assoc"). This particular error message was explicitly trapped in the HOL Light cbde
naively porting this to HOL Zero didn’t work because its equivalent filomg inv_assoc, uses error
message textinv_assoc". As explained in Sectian 3.3.1, this aspect of porting is not catered forby th
platform, and must be done manually.

M.M. Adams 13

let mk_rewrites =
let imp_conj_conv = rewr_conv imp_imp_thm
and imp_exists_rule =
let cnv = rewr_conv imp_exists_rule_thm in
fun v th -> conv_rule cnv (gen_rule v th) in
let collect_condition oldhyps th =
let conds = subtract (asms th) oldhyps in
if conds = [] then th else
let jth = foldr disch_rule conds th in
let kth = conv_rule (repeatc imp_conj_conv) jth in
let cond,eqn = dest_imp(concl kth) in
let fvs = subtract (subtract (free_vars cond) (free_vars eqn))
(list_free_vars oldhyps) in
foldr imp_exists_rule fvs kth in
let rec split_rewrites oldhyps cf th sofar =
let tm = concl th in
if is_forall tm then
split_rewrites oldhyps cf (spec_all_rule th) sofar
else if is_conj tm then
split_rewrites oldhyps cf (conjunctl_rule th)
(split_rewrites oldhyps cf (conjunct2_rule th) sofar)
else if is_imp tm & cf then
split_rewrites oldhyps cf (undisch_rule th) sofar
else if is_eq tm then
(if cf then collect_condition oldhyps th else th)::sofar
else if is_not tm then
let ths = split_rewrites oldhyps cf (eqf_intro_rule th) sofar in
if is_eq (rand tm)
then split_rewrites oldhyps cf (eqf_intro_rule (gsym_rule th)) ths
else ths
else
split_rewrites oldhyps cf (eqt_intro_rule th) sofar in
fun cf th sofar -> split_rewrites (asms th) cf th sofar;;

Figure 3: The translation into HOL Zero of the legacy code sample frop . m1.

5.2 New Code Port: HOL Light Proof Importer to HOL Zero

In the second use case, we used the platform to port HOL Light's impanteCdmmon HOL proof
objects. This was a fundamentally easier exercise because the proofampakritten specifically in
terms of the API, and because Common HOL proof porting works at thedépétform inference rules
itself. The proof importer is implemented in 2,200 lines of code.

It took about 1 hour 15 minutes to perform the porting. Despite the sowae loeing three times
longer than in the legacy code port, it took only half the time. The easier naftuine task meant that
everything went smoothly first time. The effort consisted almost entirelyystesnatically applying
search-and-replace to replace HOL Light platform function names with B€do equivalents and car-
rying out manual adjustments for functions that take their arguments diffeia the different systems.

The resulting source code was tested by importing into HOL Zero the text lieatian part of the
Flyspeck project, as part of a partial audit of the project as descibfg]. This involved the tens of
millions of platform-level inference rule steps. The import into HOL Zero vedrkrst time, suggesting
the code was ported correctly.

14 The Common HOL API

6 Conclusions

In defining a standard for basic theory and programming components,otimenGn HOL Platform is
attempting to lay the foundation for much better portability between HOL systentis,ifderms of
porting proofs and porting source code. The feasibility of large scalef porting has already been es-
tablished by others, but arguably there is scope for doing better stilh gibetter foundation. However,
the feasibility of quick and reliable source code porting has not beenrexplmtil now.

In this paper, we have given an overview of the platform’s componertseaplained the reasons
behind some of the careful design decisions made. We have also dertexhsisang the platform in
two use cases of manually porting source code from HOL Light to HOL ,Zmre for legacy code and
one for new code written specially for the platform. In both cases, Severared lines of code were
successfully and reliably ported within a few hours. Much of the efforbmally involved in a manual
port is removed, because almost all that needs to be considered is fatitfianplemented above the
platform level. Finding corresponding low-level components in the two systand the subtle ways
in which they can differ, has already been taken care of by the platforsnfar®as we are aware, this
represents a leap in the productivity of source code porting betweersi€d&ms, even when accounting
for it being less challenging than the general porting case due to botms/kteng implemented in the
same dialect of ML and due to HOL Zero effectively being a blank canvas.

It would be interesting to see how far HOL source code porting could sbaqul Certainly it is
feasible to port more challenging parts of HOL Light to HOL Zero. Obviocaisdidates are the sub-
goal package, the intuitionistic tautology checker and the powHHSON_TAC. Implementing the latest
version of the platform for hol90, HOL4 and ProofPower HOL, andipgrto these systems is another
challenge worth pursuing. The platform has already been designed wih Hystems in mind, and it
would at least enable Common HOL proof exporters and importers to belgpimited to these systems.

One insight that comes from looking at code from the various HOL systehmisnuch the subgoal
package is used in the implementation of other parts of HOL systems, sugdestiigshould be part
of the API. This should be a fairly easy extension to make, since beyonuinihlementation of an
initial few tactics, code using it appears to operate at the abstract langl tasticals, rather than use
the inner workings that differ between HOL systems. Another changéhwoaking is to update the
platform for the reform to primitive theory extension currently underwayarious HOL systems [4].
And finally, catering for Isabelle/HOL must be a long term priority. This woptdbably require a
significant overhaul of the platform to fit with such a different systent,ibdone well it would pay
dividends to have good portability between the widest used HOL systerthamdst of the family.

The systematic manner in which the porting can be carried out lends itself imatino, or at least
to partial automation. The most difficult to automate is probably the intelligentfitbe target system’s
legacy supporting code to avoid the ugly situation of creating two paralldtst#facode implementing
effectively the same thing. Thus partial automation looks a more realisticgrbafye believe there are
no fundamental difficulties in automatically porting between ML dialects, becthigssubsets of ML that
tend to be used in the implementation of HOL systems are trivially correspondtageen OCaml and
SML. So we see there being good prospects for reducing further the tik®we ta reliably port source
code, even in more challenging cases.

References

[1] M. Adams & P. ClaytonClawZ: Cost-Effective Formal Verification for Control Sgnsts.In Proceedings of
the 7th International Conference on Formal Methods andw&oét Engineering, Volume 3785 of Lecture

M.M. Adams 15

[2]

[3]
[4]

[5]

[6]

[7]

(8]

9]

[10]

[11]
[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

Notes in Computer Science, pages 465-479. Springer, 2005.

M. Adams.Proof Auditing Formalised MathematicAccepted for publication in the Journal of Formalized
Reasoning, 2015. Preprint available at:
http://www.proof-technologies.com/flyspeck/qed_paper.pdf.

R. Arthan & R. JonesZ in HOL in ProofPowerln Issue 2005-1 of the British Computer Society Specialist
Group Newsletter on Formal Aspects of Computing Scienc@520

R. Arthan. HOL Constant Definition Done Righin Proceedings of the 5th International Conference on
Interactive Theorem Proving, Volume 8558 of Lecture Note€dmputer Science, pages 531-536. Springer,
2014.

M. Gordon & T. Melham.Introduction to HOL: A Theorem Proving Environment for HeggtOrder Logic.
Cambridge University Press, 1993.

M. Gordon, R. Milner & C. WadsworthEdinburgh LCF: A Mechanised Logic of Computatiovlume 78

of Lecture Notes in Computer Science. Springer, 1979.

T. Hales et alA Formal Proof of the Kepler ConjecturarXiv:1501.02155v1 [math.MG]. arxiv.org, 2015.

J. Harrison.HOL Light: An Overviewln Proceedings of the 22nd International Conference on iE#meo
Proving in Higher Order Logics, Volume 5674 of Lecture Ndte€omputer Science, pages 60-66. Springer,
20009.

J. Hurd. The OpenTheory Standard Theory Librahy.Proceedings of the Third International Symposium
on NASA Formal Methods, Volume 6617 of Lecture Notes in Cotap&cience, pages 177-191. Springer,
2011.

C. Kaliszyk & A. Krauss.Scalable LCF-Style Proof Translatioim Proceedings of the 4th International
Conference on Interactive Theorem Proving, Volume 7998 exftre Notes in Computer Science, pages
51-66. Springer, 2013.

G. Klein et al.seL4: Formal Verification of an OS Kernéh Proceedings of the ACM SIGOPS 22nd Sym-
posium on Operating Systems Principles, pages 207-220.,/A00D.

T. Nipkow, L. Paulson & M. Wenzelsabelle/HOL: A Proof Assistant for Higher-Order Logiolume 2283

of Lecture Notes in Computer Science. Springer, 2002.

S. Obua & S. Skalbergmporting HOL into Isabelle/HOLIn Proceedings of the Third International Joint
Conference on Automated Reasoning, Volume 4130 of Lectotes\in Computer Science, pages 298-302.
Springer, 2006.

L. Paulson.Logic and Computation: Interactive proof with Cambridge E.Cambridge University Press,
1987.

K. Slind. An Implementation of Higher Order Logi€echnical Report 91-419-03, Computer Science Depart-
ment, University of Calgary, 1991.

K. Slind & M. Norrish. A Brief Overview of HOL4In Proceedings of the 21st International Conference on
Theorem Proving in Higher Order Logics, Volume 5170 of LeetNotes in Computer Science, pages 28-32.
Springer, 2008.

M. Wenzel, L. Paulson & T. NipkowT he Isabelle Frameworkn Proceedings of the 21st International Con-
ference on Theorem Proving in Higher Order Logics, Volumé®af Lecture Notes in Computer Science,
pages 33-38. Springer, 2008.

HOL Light adaptation for Common HOL:
http://www.proof-technologies.com/commonhol/commonhol-0.5-hl1-svn197.tgz.

HOL Zero homepagéittp: //wuw.proof-technologies.com/holzero/.

http://www.proof-technologies.com/flyspeck/qed_paper.pdf
http://www.proof-technologies.com/commonhol/commonhol-0.5-hl-svn197.tgz
http://www.proof-technologies.com/holzero/

	Introduction
	Motivation
	Components
	Considerations
	Theory Components
	API Components
	Functional Programming Library
	Type, Term and Theorem Utilities
	Theory Extension and Listing Commands
	Inference Rules
	Parsing and Pretty Printing

	Implementation
	Architecture
	Adapting HOL Light

	Use Cases
	Legacy Code Port: HOL Light Rewriting Mechanism to HOL Zero
	New Code Port: HOL Light Proof Importer to HOL Zero

	Conclusions

